
Explicit Substitutions
through the

Eyes of the Suspension Calculus

Andrew Gacek
University of Minnesota

1

The Context of Interest

Abstractions can be used to capture binding structure as is
present in formulas, proofs, programs, types, etc.

A representation for lambda terms is desired when these
are used as data structures.

Comparing lambda terms modulo lambda conversion rules is
important in this context.

This issue has to be dealt with in metalanguage, logical
framework and proof assistant implementations.

2

Need for Laziness

We can determine incompatibility of the terms

((λxλyλz((x z) t)) (λw w))

and
((λxλyλz((x y) s)) (λw w))

without calculating substitutions on t or s.

3

Desirable Properties for Rewriting Systems

Confluence

• But the λ-calculus is already confluent.

• Instead, we will look for confluence in the presence of
variables representing open terms. So called graftable
metavariables.

Termination

• But the λ-calculus already has nonterminating reductions.

• Instead, we will ask that the system does not introduce
nonterminating computations in places where none
previously existed.

4

Metavariable Confluence

Consider the term contracting the redex in the term

((λx A) b)[y := t]

where A is a metavariable. We can contract the redex first,

A[x := b][y := t]

Or we distribute the substitution and then contract the redex,

A[y := t][x := b[y := t]]

5

Preservation of Strong Normalization

If all reduction paths for a term t terminate in the λ-calculus,
then ideally an explicit substitution calculus should not
introduce a nonterminating reduction path for t.

Consider if we tried to gain confluence by introducing a rule of
the form

[x := b][y := t] → [y := t][x := b[y := t]]

Then the calculus would not preserve strong normalization
since we have

[x := b][y := t] → [y := t][x := b[y := t]]

→ [x := b[y := t]][y := t[x := b[y := t]]]

→ . . .

6

Combination of Traversals

In reducing the term

((λxλy t1) t2 t3)

t2 and t3 should be substituted simultaneously into t1.

This has shown to have very real practice benefit.

7

A Survey

MC PSN CT

λσ-calculus Yes No Yes

Suspension calculus Yes ? Yes

λυ-calculus No Yes No

λs-calculus No Yes No

λse-calculus Yes No No

No system has been shown to have all three properties.

8

Moving to the Suspension Calculus

While names make λ-terms more readable for humans, de
Bruijn indices are much more efficient for implementation
purposes as it eliminates the need for α-conversion.

Example: We will write λxλy x as λλ#2.

9

How Do We Make Substitutions Explicit?

λ
λ
...
λ

@

t1

t2λ

@

λ

λ
...

s

λ
...
λ

Redexes to be
contracted

We want to encode the effect on s of contracting shown redexes.

10

Encoding Substitutions

We encode the effect on s into a suspension [[s, ol, nl, e]], where

• ol is the number of abstraction encountered,

• nl is the number of abstractions that persist, and

• e is an environment list containing substitutions for the
first ol de Bruijn indices of s.

The environment is a list of environment terms. Each
environment term is a pair (t, n) where t is a term and n is an
natural number called the index. The number n indicates the
abstraction depth at which t originally occurred.

11

Examples Suspensions

Consider contracting a basic redex

(λa)b → [[a, 1, 0, (b, 0) :: nil]]

Observe how this suspension should act based on different
values of a,

[[#1, 1, 0, (b, 0) :: nil]] → b

[[#2, 1, 0, (b, 0) :: nil]] → #1

[[#3, 1, 0, (b, 0) :: nil]] → #2

[[#4, 1, 0, (b, 0) :: nil]] → #3

12

Examples Suspensions (cont)

We can even consider if a is an application

[[t1 t2, 1, 0, (b, 0) :: nil]] →
[[t1, 1, 0, (b, 0) :: nil]] [[t2, 1, 0, (b, 0) :: nil]]

Or an abstraction

[[λt, 1, 0, (b, 0) :: nil]] → λ[[t, 2, 1, (#1, 1) :: (b, 0) :: nil]]

This last suspension is particularly interesting, and we should
observe its effects on various values of t.

13

Examples Suspensions (cont)

To repeat,

[[λt, 1, 0, (b, 0) :: nil]] → λ[[t, 2, 1, (#1, 1) :: (b, 0) :: nil]]

And for various values of t we have

[[#1, 2, 1, (#1, 1) :: (b, 0) :: nil]] → #1

[[#2, 2, 1, (#1, 1) :: (b, 0) :: nil]] → b′

[[#3, 2, 1, (#1, 1) :: (b, 0) :: nil]] → #2

[[#4, 2, 1, (#1, 1) :: (b, 0) :: nil]] → #3

Where b′ is b with all of its indices shifted up by one.

14

Examples Suspensions (cont)

We can we encode b′, the shifting of b, in the suspension calculus
as [[b, 0, 1, nil]], which has the follow effects

[[#1, 0, 1, nil]] → #2

[[#2, 0, 1, nil]] → #3

[[#3, 0, 1, nil]] → #4

[[#4, 0, 1, nil]] → #5

15

The Rewriting Calculus

Beta Contraction

(βs) ((λt1) t2) → [[t1, 1, 0, (t2, 0) :: nil]]

The Reading Rules

(r1) [[c, ol, nl, e]] → c (c is a constant)

(r2) [[#1, ol, nl, (t, l) :: e]] → [[t, 0, nl − l, nil]]

(r3) [[#i, 0, nl, e]] → #(i + nl)

(r4) [[#i, ol, nl, et :: e]] → [[#(i− 1), ol − 1, nl, e]], if i > 1

(r5) [[(t1 t2), ol, nl, e]] → [[t1, ol, nl, e]] [[t2, ol, nl, e]]

(r6) [[λ t, ol, nl, e]] → λ[[t, ol + 1, nl + 1, (#1, nl + 1) :: e]]

16

Properties of the Simple Calculus

The calculus has several pleasing properties. In particular, let

• ¤r denote the compatible extension of the reading rules, and

• ¤βs denote the compatible extension of all the rules.

Then, we have:

Prop 1. ¤r is terminating and confluent.

Prop 2. ¤∗βs
is capable of simulating beta contraction in the de

Bruijn notation.

Prop 3. ¤βs is confluent.

17

Non-properties of the Simple Calculus

• The simple calculus does not allow combination of
traversals.

• The simple calculus does not have metavariable confluence.

We will solve both of these problems by adding some way of
composing substitutions.

18

Composing Substitutions

We desire a rule of the form

[[[[t1, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, e′]]

Which leaves us to ask,

• What are ol′ and nl′?

• What is e′?

19

Finding ol′ and nl′ (case 1)

Suppose that ol2 is larger than or equal to nl1. Then we have,

t

nl1

ol2

t

ol1

nl2

t

In this case,

• ol′ = ol1 + (ol2 − nl1) and nl′ = nl2.

• Environment will be e1 modified by e2 plus an initial
segment of e2

20

Finding ol′ and nl′ (case 2)

On the other hand, suppose that ol2 is smaller than nl1. Then,

t

ol1

nl2

tt

nl1 ol2

Now,

• ol′ = ol1 and nl′ = nl2 + (nl1 − ol2).

• Environment will be e1, with a final segment of it affected
by e2.

21

Finding e′

Rather than describing how to compute e′, we will introduce a
new syntactic form representing a merged environment. This
will allow us to delay the computation of the merged
environment. The new syntax is

t ::= c | x | #i | (t t) | (λ t) | [[t, n, n, e]]
e ::= nil | et :: e| {{e, n, n, e}}

The new environment form {{e1, nl1, ol2, e2}} represents the
result of composing e2 with e1.

22

Example Combination

Consider
((λλa) b) c

which we saw earlier evaluates to

(λ[[a, 2, 1, (#1, 1) :: (b, 0) :: nil]]) c

If we contract the redex we get

[[[[a, 2, 1, (#1, 1) :: (b, 0) :: nil]], 1, 0, (c, 0) :: nil]]

which merges to

[[a, 2, 0, {{(#1, 1) :: (b, 0) :: nil, 1, 1, (c, 0) :: nil}}]]

23

Example Combination (cont)

To repeat, we have
((λλa) b) c

which evaluates to

[[a, 2, 0, {{(#1, 1) :: (b, 0) :: nil, 1, 1, (c, 0) :: nil}}]]

Using the combination rules we should be able to compute this
merged environment out to get a normal environment,

[[a, 2, 0, (c, 0) :: (b, 0) :: nil]]

24

Substitution Combination Rules

(m1) [[[[t, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, {{e1, nl1, ol2, e2}}]],
where ol′ = ol1 + (ol2 . nl1) and nl′ = nl2 + (nl1

. ol2)

(m2) {{e1, nl1, 0, nil}} → e1

(m3) {{nil, 0, ol2, e2}} → e2

(m4) {{nil, nl1, ol2, et :: e2}} → {{nil, nl1 − 1, ol2, e2}}
(m5) {{(t, n) :: e1, nl1, ol2, et :: e2}} →

{{(t, n) :: e1, nl1 − 1, ol2 − 1, e2}},
provided nl1 > n and ol2 > 1

(m6) {{(t, n) :: e1, n, ol2, et :: e2}} →
([[t, ol2, l, et :: e2]],m) :: {{e1, n, ol2, et :: e2}},

where l = ind(et) and m = l + (n . ol2)

25

Properties of the Enhanced Calculus

Let

• ¤rm denote the compatible extension of reading and
composition rules, and

• ¤βs denote the compatible extension of the entire ensemble.

Then, we have:

Prop 1. ¤rm is terminating.

Prop 2. ¤rm is locally confluent.

Prop 3. ¤∗βs
is capable of simulating beta contraction on de

Bruijn terms and is also confluent on metavariables.

26

Another Calculus: λσ-calculus

The λσ-calculus is the only other system to support combination
of traversals. Instead of maintaining a list of substitutions,
however, the λσ-calculus treats substitutions more as functions.

To encode the effect of various substitutions s on a term t, we
write t[s].

27

A Taste of the λσ-calculus

Let’s start with the ↑ substitution, which shifts all de Bruijn
indices up by one. For example,

#1[↑] → #2

#2[↑] → #3

#3[↑] → #4

#4[↑] → #5

28

Composition in λσ-calculus

The λσ-calculus allows you to compose substitutions using ◦,
just like you would compose functions. Consider the effect of the
substitution ↑ ◦ ↑,

#1[↑ ◦ ↑] → #3

#2[↑ ◦ ↑] → #4

#3[↑ ◦ ↑] → #5

#4[↑ ◦ ↑] → #6

29

De Bruijn Indices in the λσ-calculus

Let us abbreviate

n︷ ︸︸ ︷
↑ ◦ ↑ ◦ · · · ◦ ↑ as ↑n. Then we can encode all the

de Bruijn indices using only #1 and ↑n.

#1[↑0] → #1

#1[↑1] → #2

#1[↑2] → #3

#1[↑3] → #4

In fact, this is exactly what the λσ-calculus does. The term #n

is just an abbreviation for #1[↑n−1].

30

The Cons Operator in the λσ-calculus

The only other operator in the λσ-calculus is the cons operator
represented by · and allows you to cons a term a onto a
substitution s as a · s.

There are two important rules for evaluating this operator,

#1[a · s] → a

↑ ◦ (a · s) → s

Lastly, we need to know about the identity substitution id.

31

A Beta Contraction in the λσ-calculus

The Beta rule in the λσ-calculus say,

(λa) b → a[b · id]

Observe how this substitution should act based on different
values of a,

#1[b · id] → b

#2[b · id] → #1

#3[b · id] → #2

#4[b · id] → #3

32

More on Composition in the λσ-calculus

To see exactly how that works, we need to know the rule

a[s][t] → a[s ◦ t]

Then by expanding the abbreviation for #n to #1[↑n−1], we see
for example,

#4[b · id] = #1[↑3][b · id]

→ #1[↑3 ◦ (b · id)]

→ #1[↑2 ◦ id]

→ #1[↑2]
= #3

33

Associativity in the λσ-calculus

We saw that
↑ ◦ (a · s) → s

but what about
(↑ ◦ ↑) ◦ (a · s)

We cannot evaluate this term without knowing another rule,

(s ◦ t) ◦ u → s ◦ (t ◦ u)

which allows us to do

(↑ ◦ ↑) ◦ (a · s) → ↑ ◦ (↑ ◦ (a · s)) → ↑ ◦ s

34

Moving Underneath Abstractions in λσ

The rule for moving a substitution underneath an abstraction is,

(λa)[s] → λa[#1 · (s ◦ ↑)]

Notice that we modify the substitution with ↑ as we push it
down.

35

Primary Differences

• The way renumbering for environment terms is handled

– In λσ we apply ↑ each time we go down

– In the suspension calculus we increment nl, and use the
difference between nl and the index to compute a shift
amount when we extract a term from the environment

• Interactions between combined environments

– In λσ we have (s ◦ t) ◦ u → s ◦ (t ◦ u)

– In the suspension calculus, {{e1, nl1, ol2, e2}} cannot
interact with other merged environments

36

Translation to the λσ-calculus

Using the new merging rules for the suspension calculus, we
have been able to define a mapping to the λσ-calculus.

For example,

T ([[a, 1, 0, (b, 0) :: nil]]) = T (a)[T (b) · id]

T ([[a, 2, 1, (#1, 1) :: (b, 0) :: nil]]) = T (a)[#1 · ((T (b) · id) ◦ ↑)]

T ([[a, 2, 0, {{(#1, 1) :: (b, 0) :: nil, 1, 1, (c, 0) :: nil}}]]) =

T (a)[(#1 · ((T (b) · id) ◦ ↑) ◦ (T (c) · id)]

T ([[a, 2, 0, (c, 0) :: (b, 0) :: nil]]) = T (a)[T (c) · T (b) · id]

Moreover, the translation preserves the rewrite relationship.

37

Lack of PSN in the λσ-calculus

Mellies showed that the λσ-calculus does not preserve strong
normalization, by demonstrating a strongly normalizing term
with an infinite reduction path in the λσ-calculus. He did this
by noting that in the expression

↑ ◦ (a · s),

the term a is vacuous, but the lax way the λσ-calculus handles
merged substitutions, still allows a to interact with other
substitutions:

(↑ ◦ (a · s)) ◦ u → ↑ ◦ ((a · s) ◦ u)

38

Hope for PSN in the Suspension Calculus

One of the primary differences listed before was

• Interactions between combined environments

– In λσ we have (s ◦ t) ◦ u → s ◦ (t ◦ u)

– In the suspension calculus, {{e1, nl1, ol2, e2}} cannot
interact with other merged environments

Because of this, because of the careful way that the substitution
calculus handles merged substitutions, we believe that we will
be able to prove preservation of strong normalization.

39

Summary

• Simplified merging rules for the suspension calculus

• Rewrite preserving translation from the suspension
calculus to the λσ-calculus

• The translation and differences between the systems give
us hope for PSN in the suspension calculus

40

Questions?

41

Appendix

42

Beta and Reading Rles

Beta Contraction

(βs) ((λt1) t2) → [[t1, 1, 0, (t2, 0) :: nil]]

The Reading Rules

(r1) [[c, ol, nl, e]] → c (c is a constant)

(r2) [[#1, ol, nl, (t, l) :: e]] → [[t, 0, nl − l, nil]]

(r3) [[#i, 0, nl, e]] → #(i + nl)

(r4) [[#i, ol, nl, et :: e]] → [[#(i− 1), ol − 1, nl, e]], if i > 1

(r5) [[(t1 t2), ol, nl, e]] → [[t1, ol, nl, e]] [[t2, ol, nl, e]]

(r6) [[λ t, ol, nl, e]] → λ[[t, ol + 1, nl + 1, (#1, nl + 1) :: e]]

43

Merging Rules

(m1) [[[[t, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, {{e1, nl1, ol2, e2}}]],
where ol′ = ol1 + (ol2 . nl1) and nl′ = nl2 + (nl1

. ol2)

(m2) {{e1, nl1, 0, nil}} → e1

(m3) {{nil, 0, ol2, e2}} → e2

(m4) {{nil, nl1, ol2, et :: e2}} → {{nil, nl1 − 1, ol2, e2}}
(m5) {{(t, n) :: e1, nl1, ol2, et :: e2}} →

{{(t, n) :: e1, nl1 − 1, ol2 − 1, e2}},
provided nl1 > n and ol2 > 1

(m6) {{(t, n) :: e1, n, ol2, et :: e2}} →
([[t, ol2, l, et :: e2]],m) :: {{e1, n, ol2, et :: e2}},

where l = ind(et) and m = l + (n . ol2)

44

λσ-calculus Rules

(λa) b → a[b · id] (a b)[s] → a[s] b[s]

(λa)[s] → λa[#1 · (s ◦ ↑)] a[s][t] → a[s ◦ t]

(a · s) ◦ t → a[t] · (s ◦ t) (s ◦ t) ◦ u → s ◦ (t ◦ u)

#1[id] → #1 #1[a · s] → a

id ◦ s → s ↑ ◦ id → ↑

↑ ◦ (a · s) → s

45

Translation

Terms

T (#i) = #1[↑i−1]

T (λa) = λT (a)

T (a b) = T (a) T (b)

T ([[t, ol, nl, e]]) = T (t)[E(e, nl)]

Environments

E(nil, j) = ↑j

E((t, n) :: e, j) = (T (t) · E(e, n)) ◦ ↑j−n

E({{e1, nl1, ol2, e2}}, j) = E(e1, nl1) ◦ E(e2, j − (nl1
. ol2))

46

